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Surface Properties of a Classical Two-Dimensional 
One-Component Plasma: Exact Results 
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At one special temperature, the equilibrium statistical mechanics of a classical 
two-dimensional one-component plasma can be worked out exactly. This model 
is used for computing the density profile and the two-body correlation function 
for three kinds of electrified interfaces: charge particles attracted by a charged 
plate, charged particles near the permeable boundary- of a semiinfinite back- 
ground, charged particles near the interface between two backgrounds of differ- 
ent densities. Sum rules are discussed. 

KEY WORDS: Coulomb systems; plasmas; surface properties; electrified 
interfaces. 

1. I N T R O D U C T I O N  

The behav io r  of cha rged  fluids near  a surface or  an  interface is cur ren t ly  
a t t rac t ing  much  interest .  Possible  app l i ca t ions  are  to meta l l ic  surfaces, 
m e t a l - e l e c t r o l y t e  interfaces,  p l a s m a  physics,  b iophysics ,  etc . . . . .  The  sim- 
plest  model ,  the o n e - c o m p o n e n t  p lasma,  has recent ly  been  s tudied  theoret i-  
cally(~-3) and  by  numer ica l  s imulat ion.  (4) 

In  two d imensions ,  there is a soluble  model :  at  one special  t empera-  
ture, the equ i l ib r ium stat is t ical  mechan ics  of a classical  two-d imens iona l  
o n e - c o m p o n e n t  p l a s m a  can  be worked  out  exactly,  for bo th  bu lk  (5'6) and  
surface proper t ies ,  (7'8) b y  using me thods  f rom the theory of r a n d o m  mat r i -  
ces. (9'l~ This  mode l  is a system of ident ica l  par t ic les  of charge e which 
in teract  th rough  the two-d imens iona l  C o u l o m b  poten t ia l :  the in te rac t ion  
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energy between two particles at a distance r from one another is 

eZw(r )  = " e Z l n ( r / L )  

where L is a length scale. Usually, the particles are supposed to be 
embedded in a uniform background of opposite charge. The dimensionless 
coupling constant is ]? = e 2 / k ~  T, where k~ is Boltzmann's constant and T 
is the temperature. Exact results were obtained for the special value F = 2. 

In the present paper, we consider three more cases in which the 
structure of the two-dimensional system at an interface can be studied by 
explicit exact calculations: 

(a) A uniformly charged plate (i.e., a line in the two-dimensional 
model) attracts on one of its sides an atmosphere of charged particles; there 
is no background. 

(b) A uniform background fills a half-space; there is no background 
in the other half-space. The boundary between these two half-spaces is 
permeable to a fluid of charged particles. 

(c) Two backgrounds with different uniform densities are separated 
by a plane boundary (i.e., a line in the two-dimensional model). Charged 
particles adjust their density to this discontinuous background density. 

For these three cases, at F = 2, it is possible to compute exactly the 
density profile of the particles and their two-body density; this is done in 
Section 2. These quantities obey a number of sum rules, which will be 
discussed in Section 3. 

These exact results in a special case can provide a test bench for 
approximations to be used in more general situations. This will be the 
subject of a forthcoming publication. 

2. DENSITY PROFILES AND CORRELATIONS 

The method of calculation is very similar to the one which has been 
used for other surface problems. (7'8) We start with a system of circular 
symmetry. The interface is a circle of radius R. We compute the densities, 
and afterwards take a limit R ~ m for obtaining a plane interface. In terms 
of the total potential energy V(rl, r 2 , . . . ,  rN) for a system of N particles, 
the n-body density is 

N! f e x p ( -  V / k s T ) d r , + l  . . . dr~v 
P ( " ) ( r " r 2 ' ' ' ' ' r N ) - -  ( N - n ) !  f e x p ( - V / k B r ) d r , . . . d r  N (2.1) 

The origin is at the center of the circle, and the position r v of the ith particle 
can be represented either by the polar coordinates (ri, Oi) or by the complex 
number Z i = riexp(iOi). Up to a constant, the total potential energy is 
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always of the form 
N 

V = ~ v(ri) - e 2 ~ ln[rg- rj[ (2.2) 
i=l N >~i>j>~ l 

where v(ri) is the interaction of the ith particle with the charged interface or 
with the background and the last term is the interaction between the 
particles. When F =  e2 /k~T  -= 2, this interaction between the particles 
contributes to the Boltzmann distribution exp( -  V / k  B T) by a factor 

exp{(e2/kBT)i~>jlnJri-rj l l  -~- i~>j(Z i - Z j )  2 (2 .3)  

The product in (2.3) is a Vandermonde determinant which can be ex- 
panded as 

E ( Z i -  Z j ) =  E s " '"  ZN ' (2.4) 
i >j P 

where P = (a l , a  2 . . . .  , aN)  is some permutation of ( 1 , 2 , . . . ,  N) and the 
sum runs on all permutations; ee is the sign of the permutation. The key 
point is that the angular integrations which occur in the calculation of the 
one-body or many-body densities (2.1) can be performed at once, by using 
(2.4) in (2.3) and the orthogonality property 

fo2CrZiPZ~ q dOi= 27rr2pdpq (2.5) 

One finds for the one-body density 

p(l)(r) = exp[ - (1 /k  B T ) v ( r ) ] K ( r  2) (2.6) 

where 

N -  1 F2 l 
K(r2) = E (2.7) 

t=0 f e x p [ - ( 1 / k B T ) v ( r )  ]r2t dr 

and for the truncated two-body density 

0(T 2) (r,, r2) = O(2)(r,, r2) - O (')(rl)0 (')(r2) 

= - e x p { - ( 1 / k s T ) E v ( q  ) + v(r2) ] } [ K ( Z , Z f ) I  2 (2.8) 

2.1. Uniformly Charged Plate and Charged Particles (Case a) 

We start with a circle of radius R uniformly charged with a linear 
charge density - e o .  Outside the circle, there are N particles of charge e. 
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In (2.2), 

v(r)  = 2vrRoeZln r (2.9) 

All integrals in (2.1) and (2.7) converge provided that N < 2~rRo - I. Thus, 
the charged circle of total charge -2~rRoe can attract at most 27fRo-  1 
particles of charge e; if we try to put more particles, they evaporate to 
infinity. In the following, we choose N = 2~rRo - 1. Thus only one particle 
is missing for the system to be neutral; in the limit of an infinite system, it 
will become neutral, since the charge per particle will go to zero. 

With v(r) given by (2.9), the integrals [to be taken for r in the range 
(R, ~)]  and the sum in (2.7) are elementary. One finds from (2.6) 

- 2 Ro ( 2 . 1 o )  
R 2 

P(1)(r) . . . .  1 ~ R 2 - ~ -  rrr4 ~1 -- R2/r2)  2 

Finally, the distance x to the charged circle is defined by 

r = R + x (2.11) 

and the limit of (2.10) as R ~  oo for fixed values of o and x is taken. The 
density profile becomes 

p<0(x) = 1 [ 1 - (t + 4~rox)exp(- 4~rox)l (2.12) 
4rrx 2 

This profile is plotted in Fig. 1. For large x, p<ll(x) has only an 

pO)(x)l 2 w2 

0 1 2 4~ox 

Fig. I. The density profile p(1)(x) for charged particles attracted by a uniformly charged 
plate; there is no background. 
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algebraic decay, behaving like 1/4~rx 2. The overall neutrality condition 

- o + r O~p(O(x) dx = 0 ( 2 . 1 3 )  
J 0  

is satisfied. 
The calculation of the truncated two-body density from (2.8) is very 

similar. When the limit R -> m is taken, it is convenient to choose a new 
origin on the charged plate, with the x axis normal to the plate and the y 
axis along the plate; a pair of particles is described by their distances x l 
and x 2 to the plate and the difference y of their coordinates along the plate. 
One finds 

P(T2)(XI'X2;'Y)= -- P(1)( Xl-t- X2-- @ ) 2 2  

1 
'TT2[(XI "Jr" X2) 2 -I-,/V2] 2 

• { 1 - 2 [ ( 1  + 2~ro(x 1 + x2))cos2~r W 

+ 2~rwsin2~rw]exp[-erro(x 1 + x2)] 

+[(I + 2~'o(xl + x2)) 2 +(2~W) 2] 

• exp[-4~ro(x  I + x2)]} (2.14) 

When x 1 -> m or x2-> m, p(r 2) has an algebraic decay governed by its term 
-1/rr2[(xl  + x2)2 +y2] 2. When y - > m ,  p(r 2) has an algebraic decay like 
-- 4o2exp[ -- 4rro(x I + x2)]/y 2. 

It is also of interest to consider the integrated quantity 

s(y) = s176176163176 y) (2.15) 

When [Yl ---> m, this quantity decays like -3/2rr2Fy2; note that there are 
contributions to this asymptotic form not only from the term of order 1/y2 
in O(r 2), but also from the term of order 1/[(x 1 + x2) 2 + y212 after it has been 
integrated upon xi and x 2. 

2.2. Semiinfinite Background with Permeable Boundary (Case b) 

We now start with a disk of radius R filled with a uniform background 
of charge density - e 0 ,  and N particles of charge e which freely move 
inside or outside the disk. It is convenient to choose the unit of length in 
such a way that 0 = l/~r (this means that the average interparticle distance 
a in the bulk, defined by 0---1/~ra2, here is a = 1). The background- 
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particle interaction v(r) is, up to a constant, 

e 2 v ( r )=  -~ r 2, r <<. R 
(2.16) 

e 2 R 2 r v(r) = ~- + e2R21n~ , r > R 

All integrals in (2.1) and (2.7) converge provided that N < R 2 - 1. This 
means again that the maximum number R 2 _ 1 of particles that the system 
can hold is such that only one particle is missing for the system to be 
neutral; we do choose N- -  R 2 - 1. The integrals in (2.7) then are 

[ R 2(l+ 1) 
~ e x p [ - ( 1 / k B T ) v ( r ) ] r Z ' d r  = rr 7 ( l +  1,R 2) + R2 - 1 -  1 

q 
exp( - R 2) 1 

(2.17) 

where 

f ( x )  = e x p ( ,  2x2), x < 0 
(2.21) 

f ( x )  = 1, x > 0 

The integral representation (2.20) of the density profile has been 
numerically computed; this profile is plotted in Fig. 2. The density at the 
interface is O(l)(0)= 0.360220. For x---> + ~ ,  p(~ again behaves like 
1/4~rx 2. For x + -  m, p(~)(x) approaches O in a way which is essentially 

where 7 is the incomplete gamma function 

7(1+ 1, R 2) R2 = s  e-"utdu (2.18) 

In the limit R-+ m, the dominant values of l in (2.7) are close to R 2 
and the gamma function (2.18) can be replaced by its asymptotic form (~1) 

g( l+l ,R2)~(~) ' /2Rexp( l ln l - l )[ l+~(R2- l )] ,  Rv 75 (2.19) 

where �9 is the error function 

2 s  e_.2 du | 

The summation (2.7) can be replaced by an integral upon t = (R 2 _ l ) /  
R~/2. Defining again the coordinate x normal to the interface by (2.11), one 
finds, in the limit R -~ co, for a given value of x, 

exp[ - 2tx'Q - t2] dt (2.20) 2 f p(l)(x) 
= f ( x ) - ~  Jo 1 + ~(t) + exp(-t2)/ t~[~ 
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Fig. 2. The density profile p(~)(x) for charged particles in a semiinfinite background with a 
permeable boundary; the background occupies the region x < 0. 

Gaussian: 

[ e x p ( - x 2 )  1 
p(1)(x)~ O 1 21xl  ,/2 (2.22) 

One can verify after some manipulations that the overall neutrality condi- 
tion 

f : o o [ p ( " ( x ) - p ] d x +  fo~176 (2.23) 

is satisfied. 
The truncated two-body density for a plane interface is found to be 

2 
e x p [ - t ( x ,  + x 2 - iy)~[2-t 2] dt 2 oo 

PP) = - f (x l )  f(x2) 7 7 i  s 1+-~-~) + e-~p~ t777~/~ - (2.24) 

The asymptotic properties of (2.24) when Ix I + x 2 - iy I --)00 can be ob- 
tained by integration by parts: 

p(2) (Xl, X2; y ) ~  _ f(xl)f(x2) (2.25) 
+ x2) + / ] 2  

Therefore, as particle 2 recedes in a direction such that x2---)- 0% p(r 2) 
decays in a way which is essentially Gaussian; If particle 2 recedes in a 
direction such as x 2---) + oo, p(2) decays algebraically as the inverse fourth 
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power of the distance. Finally, along the interface, i.e., if [y]-~ m for fixed 
values of x 1 and x 2, p(r 2) also decays as the inverse fourth power 1/y 4. 

The integrated quantity 

s(y)=s163176176 y) (2.26) 

has an asymptotic form which is obtained from the contributions Xl, x2 > 0 
to (2.25); it behaves like - 1 /Fr r~  2 as lY] + m. 

2.3. Two Backgrounds with Different Densities (Case c) 

We start with a disk of radius R filled with a background of charge 
density -ozle/~z; outside the disk, there is a background of charge density 
-a2e/Tr, which extends to infinity. We introduce at once an infinite 
number of particles of charge e. The background-particle interaction v(r) 
is, up to a constant, 

e 2 V(r) = ~-oqr  2, r < R 
(2.27) 

e 2 e 2 r v(r) = T ( a , -  o~2)R 2 + -~-oL2 r2 + e2(oq - o~2)R21n ~ , r > R 

The integrals in (2.7) are 

s  [ - ( 1 / k s T ) v ( r  ) ]r2' dr 

= [ r( t+ 1, ,R 2) 
7/" [ 0~( +1 

where 

+ exp[(c~ 2 -  cq )R21F( /+  1 +  (a 2 -  eq)R2, c~2R 2) ] 

(c~ZR 2)(~2~-~,)-R2 a-----s ] (2.28) 

~--- e F(n + 1,z) %'du 

The summation in (2.7) now runs for l from 0 to m. 
asymptotic form (2.19), the related asymptotic form 

+ = qr '/2 n [ 1 ~ (  z - n  

(2.29) 

Using again the 

(2.30) 
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and  rep lac ing  the s u m m a t i o n  in (2.7) by  an  in tegra t ion  upon  t = ( a  1R 2 l)  
/R~/2, one now finds 2 in the l imit  R--> ae, 

o ~'~(x) = g(x)  7 5  
e x p ( - 2 t x - ~ - )  

 t2)[ t)l 1 exp - -  1 + �9 t 

dt (2.31) 

~, c~2 ] i 

where 

g(x) = e x p ( - 2 ~ l x 2 ) ,  x ~< 0 

g(x) = exp ( - -2e2x2 ) ,  x > 0 
(2.32) 

It  can  be  checked  that  (2.31) reduces  to (2.20) in the case a I = 1 %  = 0. 
The  integral  represen ta t ion  (2.31) of the dens i ty  profi le  has been  

numer ica l ly  c o m p u t e d  in the case a I = 1, o~ 2 =0,5; this prof i le  is p lo t ted  in 
Fig. 3. Now,  O(~ approaches  the b a c k g r o u n d  dens i ty  in a way  which is 

1- 

.5 

I I 
-1 0 1 x"- 

Fig. 3. The density profile p(O(x) for charged particles near the plane interface between two 
backgrounds of different densities; the background density is 1/rr for x < 0 and 0.5Iv for 
x > 0 .  

2 This result has been independently obtained by L. Blum (to be published). 



812 Jancovici 

essentially Gaussian on both sides of the interface. The overall neutrality 
condition is again satisfied: 

;'E ) "1 o p(')(x)-a_~l dx+ p ( l ) ( x ) - - -  dx=O (2.33) 
o o  qT" '77" 

The truncated two-body density for a plane interface is found to be 

0~ 2) (x ,  x2; y) 

= -g(x l )g(x2)  
2 ;'_~ exp[ - t ( x l + x e - i y ) v / ~ ]  dt 

U5 
1 exp - -  1 + qb t 

+ ' exp('  I (')1 
(2.34) 

Since the integration on t in (2.34) now runs from - m  to + ~ ,  as 
Ixl + x 2 - iy]-~  oe, O(r 2) decreases faster than any inverse power of this 
quantity: the correlations decay faster than any inverse power law in any 

direction. In the direction parallel to the interface, O(r 2) will decay with 
exponentially damped oscillations as a function of y. 

3. SUM RULES 

The exact solutions which have been obtained in Section 2 are ex- 
pected to satisfy a number of sum rules which will now be discussed. 

3.1. Overall Electroneutrality 

The total charge in the interfacial layer is expected to vanish. This has 
indeed been already verified for the three cases considered here, in (2.13), 
(2.23), (2.33). 

3.2. Potential 

Let ~(x) be  the electrostatic potential. We choose f f ( - o c ) =  0. Let 
pQ(X) be the difference between the particle density p(1)(x) and the 
background density at x. 

We consider first case (c) (two backgrounds of different densities 
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Pl = al/~r for x < 0 and P2 = a2/~r for x > 0). The potential at the inter- 
face is 

,(o) = 2 ef~ oQ(x)xdx (3.1) 

and the total potential difference across the interracial layer is 

q , (~ )  = 2~re~ ~176 p Q ( X ) x d x  (3.2) 

The potentials are expected to obey two sum rules (1-3). 

e•(ce) + ]s = Pt(Pl) ( 3 . 3 )  

where/z(p) is the chemical potential in the bulk phase of density p, and 

P(Pl) - P(P2) = (01 - P2)e~b(0) + P2eff(~) (3.4) 

where p(p)  is the pressure in the bulk phase of density p. For a two- 
dimensional one-component plasma, the  equation of state has the simple 
form (12) 

p = p(k~ T - e2/4) (3.5) 

and therefore the chemical potential difference is 

[ -~-e2 ])ln ~'102 (3.6) 

Here, k a T =  e2/2.  Using (2.31) in (3.1) and (3.2), one can show after some 
manipulations (13) that the sum rules (3.3) and (3.4) are indeed satisfied. 

In case (b) (semiinfinite background with a permeable boundary), the 
total potential difference (3.2) and/~(P2) both diverge (02 = 0). The sum rule 
(3.3) is still satisfied, in the sense that these divergences are consistent with 
one another and with the asymptotic form 1/4~rx 2 for 0 (~)(x). The sum rule 
(3.4) takes the simpler form 

p = ped?(O) (3.7) 

where p and 0 are the bulk pressure and density. Using (2.20) in (3.1), one 
can show that (3.7) is indeed satisfied. 

3.3. Corre lat ions 

The truncated two-body density p~2) satisfies sum rules, (J4'15) the 
validity of which is related to the asymptotic behavior of p~ z). 

For case (a), the asymptotic behavior of p(r z) and of its integral s ( y )  
defined by (2.15) have been described in Section 2.1. The y - 2  behavior is 
the same as for a two-dimensional one-component plasma (with a back- 
ground) near a plane hard wall. Note, however, that the linear response 
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argument which has been used elsewhere (v'8) for predicting the coefficient 
in front of y - 2  in the asymptotic form of s(y) is not applicable here, 
because the decay of O(2)(x1,x2; y) in the x direction (i.e., when xl or 
x 2 ~ m) is not fast enough. The perfect-screening sum rule (14) 

s  dx2~__2d)jp(2)(Xl,X2; y) -'~" --p(l)(x1) (3.8) 

is satisfied. The dipole moment of 0 (2) does not vanish, because the decay 
of p(2) is not fast enough; instead, it obeys the sum rule (15) 

r162 oo ~P(1)(xl) (3.9) -2,,rs dx2f~ dy(x2- Xl),O(2)(xl,x2; y ) -  20 

For case (b), the asymptotic behavior of p(r 2) and of its integral s(y) 
defined by (2.26) have been described in Section 2.2. Again, the coefficient 
in front of y - 2  in the asymptotic form of s(y) cannot be predicted by the 
general theory of Ref. 7. Since 0(2) decays as an inverse fourth power, both 
the monopole and dipole moment sum rules of Ref. 14 are satisfied: 

f f  ax2ffjyo;2)(x,,x2; y)= -o(')(x,) (310) 

f_ ax2fSoo,(X2-X,)O(2)(x,,<; y)=o (3.11) 

Higher-order multipole moments of 0(2) are not defined. 
For case (c), as described in Section 2.3, 0 (2) decays faster than any 

inverse power law. Correspondingly, the sum rules (3.10) and (3.11) are 
valid, and more generally we expect all higher-order electrical moments of 
p(2) to vanish. A fast decay of p(2) along the interface had already been 
obtained for a charged fluid near a perfectly conducting wall, in weak- 
coupling theories(~7'~8); such a decay, faster than any inverse power law, 
seems to be a general feature along a plane interface between two conduct- 
ing media. 
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